Site Tools


en:tech:jkbmscan

This is an old revision of the document!


JK-BMS-CAN

Motivation

Part of the Solar System is the battery management system (BMS). In my case I used a Chinese company JKBMS that has made a name for itself online. One drawback was the missing link between BMS and inverter. So that the inverter can only estimate the charge level for instance. The following project closes the gap.

Planning

INVERTER

In order to allow two systems to talk to each other we have to find a compatible protocol or adapt one side to fit to the other. The inverter GROWATT SPF5000ES from my Solar System supports RS485 and CAN.

Supported protocols

Connection

Unfortunately the battery manufacturer use own proprietary protocols. At least the protocol from PYLONTECH can be easily found in the internet (see download area). For GROWATT it's the protocol setup CAN L52 (Protocol)

BMS

The BMS B2A245-20P documentation describes a CAN interface but it's only optional (can be customised). But a RS485 interface is standard named GPS. In fact it's a serial interface with 3.3V level shifter inside and MODBUS protocol. JKBMS interfaces.

CAUTION: The power pin VCC at RS485/GPS connector is VBAT. That means we will see a voltage of 45-58V (=battery voltage) at this terminal.

The protocol description can be find in the download session.

The target job for our converter would be to request all mandatory data from BMS via MODBUS and send it via dedicated CAN messages to the inverter.

Solution

A lot of clever makers have already challenged this task. Here an incomplete list:

As I use Home Assistant for my home automation I preferred a ESPHome solution from Sleeper85. But because I am an enthusiast of compact solutions I designed my own PCB and housing.

Hardware

The converter block diagram doesn't look too complicated.

JKBMS to CAN converter
                 UART-TTL                RS232-TTL                 CAN BUS (5V).
┌──────────┐                ┌──────────┐             ┌────────────┐              ┌──────────┐
│          │<TX----------RX>│16      23│<TX-------TX>|            |              |          |
│  JK-BMS  │<RX----------TX>│17      22│<RX--4K7--RX>|  TJA1050   |<---CAN H --->| Inverter |
│          │<-----GND------>│   ESP32  │<----GND---->|    CAN     |<---CAN L --->|          |
│          │<VBAT-+    +-5V>│VIN    VIN│<----5V----->|            |              |          |
└──────────┘      |    |    └──────────┘             └────────────┘              └──────────┘
                ┌────────┐
                │ Power  │
                │ Supply │
                └────────┘      

The converter should be always powered (as the BMS) to avoid dead locks. The power supply is based on a XL7015 Buck DC to DC Converter (0.8A 150KHz 80V) from XLSEMI. The 5V output voltage can be defined by two resistors (R1/R2). The CAN interface is implemented by well-known TJA1050 from NXP and a standard RJ45 plug. The heart of the converter is a 38-pin ESP32-DEVKIT.

Schematic

PCB

The final module in a 3D-printed case. The corresponding STL file is also attached in download area.

The final module

Software

As mentioned the software is based on ESPHome. I did only some slight modifications at the CAN protocol data.

JK-BMS-CAN ( PYLON, Seplos, GoodWe, SMA and Victron CAN bus protocol )
 
# esp32_wire_jk-bms-can.yaml is free software: you can redistribute it
# and/or modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation, either version 3
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/gpl.html>.
 
# V1.16.3 Sleeper85 : ID 0x379 will be sent when choosing protocol 2 or 4 (Battery Capacity for Victron, Sol-Ark and Luxpower)
# V1.16.2 Sleeper85 : Split the "Charge/Discharge values" section and added instructions for "Stop Discharging" + Set "esp-idf" framework by default
# V1.16.1 Sleeper85 : Slider charging_current max value = ${charge_a}, Improved Alarm/Charging/Discharging Logic, Improved CAN protocol and Victron support
# V1.15.5 Sleeper85 : Improved code and set api "reboot_timout" to "0s" by default (no reboot without HA)
# V1.15.4 Sleeper85 : Improved documentation for API, Web Server and WiFi settings
# V1.15.3 Sleeper85 : Add 'CAN Protocol Settings' and new CAN ID based on the SMA and Victron protocol (alpha)
# V1.15.2 Sleeper85 : Improved Alarm handling, all alarms will set charge/discharge current to 0A and set 'Charging Status' to Alarm
# V1.15.1 Sleeper85 : New CANBUS script with CANBUS Status in HA, stop sending CAN messages if the inverter is not responding (fix WDT reboot issues)
# V1.14.3 Sleeper85 : Improved documentation + Charging Voltage tips for Deye
# V1.14.2 Sleeper85 : Improve 'Charging Voltage' behavior
# V1.14.1 Sleeper85 : Add 'Float charge function'
# V1.13.6 Sleeper85 : Add 'Absorption time' and 'Absorption Offset V.' slider
# V1.13.5 Sleeper85 : Set CAN manufacter to "PYLON" for improve compatibility with Deye and other inverters
# V1.13.4 Sleeper85 : Improve 'Charge Status' behavior + add 'Rebulk Offset V.' slider
# V1.13.3 uksa007   : Improve compatibility with Deye and other inverters
# V1.13.2 uksa007   : Send Max Temperature of T1, T2 to inverter
# V1.13.1 uksa007   : Fix compile issues with new version of ESPhome 2023.4.0, set rebulk offset to 2.5

substitutions:
# +--------------------------------------+
# name that will appear in esphome and homeassistant.
  name: jk-bms-can
  device_description: "JK-BMS via UART-TTL and CAN"  
# +--------------------------------------+
# Number of Battery modules max 8. Each LX U5.4-L battery is 5.4kWh, select the number closest to your capactiy eg 3.2V * 280Ah * 16 = 14.3kWh
# Each PYLON US2000 battery has 48V/2.4kWh, Installed battery set: 3.2V * 310Ah * 16 = 15.87kWh --> 7  (7 * 2.4kWh = 16.8kWh)
  batt_modules: "7"
# +--------------------------------------+
# | Battery Charge Settings              |
# +--------------------------------------+
# Tips for Deye inverter : Add 0.1v to the settings below because the Deye charging voltage is always 0.1v lower than requested.
# Float V. : 53.7v              (3.35v/cell - Natural voltage of a fully charged cell at rest, I advise you not to go higher.)
# Absorption V : 55.3v          (3.45v/cell - It's not necessary to use a charging voltage higher than 55.2V for a full charge.)
# Absorption Offset V. : 0.15v  (The absorption phase will start at 55.15v (BMS voltage). Warning: the BMS voltage must be correctly calibrated.)
# +--------------------------------------+
# This is max charging amps eg 100A, for Bulk - Constant Current charging(CC), should be at least 10A less than BMS change current protection, 0.5C max
# 100A * 50V = 5000W
  charge_a: "62"
# Float Voltage : corresponds to the voltage at which the battery would be maintained at the end of the absorption phase. (53.6v eg 3.35v/cell for 16 cells 48V battery)
  float_v: "53.6"
# Absorption Voltage : corresponds to the Bulk voltage that will be used to charge the battery. (55.2v eg 3.45v/cell for 16 cells 48V battery)
  absorption_v: "55.2"
# Absorption time in minutes to hold charge voltage after charge voltage is reached eg 30
  absorption_time: "30"
# Absorption offset, x Volts below absorption voltage battery will start the absorption timer, eg 55.2-0.05 = 52.15v
  absorption_offset_v: "0.05"
# Rebulk offset, x Volts below absorption voltage battery will request rebulk, eg 55.2-2.5 = 52.7v
  rebulk_offset_v: "2.5"
# +--------------------------------------+
# | Battery Discharge Settings           |
# +--------------------------------------+
# Max discharge amps eg 120, should be at least 10A less than BMS over discharge current protection, 0.5C max
# 120A * 50V = 6000W
  discharge_a: "100"
# Minimum discharge voltage eg 48v/16 = 3V per cell
  min_discharge_v: "48"
# +--------------------------------------+
# | Battery State of Health (SOH)        |
# +--------------------------------------+
# Maximum charging cycles is used to calculate the battey SOH, LF280K v3 =8000.0, LF280K v2 =6000.0, LF280=3000.0 (decimal is required)
  max_cycles: "6000.0"
# +--------------------------------------+
# | CAN Protocol Settings                |
# +--------------------------------------+
# CAN BMS Name (0x35E) : 0 NoSent / 1 PYLON / 2 GOODWE / 3 SEPLOS
  can_bms_name: "1"
# CAN Protocol
# 1 : PYLON 1.2 (Deye)
# 2 : SEPLOS 1.0, PYLON 1.3, GOODWE 1.5 (GoodWe, Sol-Ark, Luxpower)
# 3 : SMA (Sunny Island)
# 4 : VICTRON
  can_protocol: "1"
# +--------------------------------------+
# | ESP32 CAN/serial port pins           |
# +--------------------------------------+
# GPIO pins your CAN bus transceiver (TJA1050, TJA1051T or SN65HVD230) is connected to the ESP32 TX->TX and RX->RX !
  can_tx_pin: GPIO23
  can_rx_pin: GPIO22
# GPIO pins your JK-BMS UART-TTL is connected to the ESP32 TX->RX and RX->TX !
  tx_pin: GPIO17
  rx_pin: GPIO16
 
# +------------------------------------------------------------------+
# | ** The settings below can be modified according to your needs ** |
# +------------------------------------------------------------------+
  external_components_source: github://syssi/esphome-jk-bms@main
  # components
  # github://syssi/esphome-jk-bms@main
  
esphome:
  name: ${name}
  on_boot:
    then:
      - switch.turn_on: switch_charging
      - switch.turn_on: switch_discharging
      - switch.turn_on: switch_chg_float
 
# +--------------------------------------+
# | ESP32 settings                       |
# +--------------------------------------+
# For a stable Bluetooth connection keep the "esp-idf" framework
esp32:
  board: esp32doit-devkit-v1
  framework:
    type: esp-idf

external_components:
  - source: ${external_components_source}
    refresh: 0s
    
logger:
#  level: DEBUG

ota:
  password: "06113be1d70fb74e1cc42005ceee16d5"
 
# Please use the native `api` component instead of the `mqtt` section.
# If you use Home Assistant, the native API is more lightweight.
# If there is no HA server connected to this API, the ESP32 reboots every 15 minutes to try to resolve the problem.
# If you don't use Home Assistant please uncomment the "reboot_timeout: 0s" option.
api:
  reboot_timeout: 0s
 
# If you don't want to use ESPHome's native API you can use MQQT instead.
# In this case don't forget to remove the 'api:' section.
# mqtt:
#  broker: !secret mqtt_host
#  username: !secret mqtt_username
#  password: !secret mqtt_password
#  id: mqtt_client
 
# In the event of problems with the WiFi network, the ESP32 will reboot every 15 minutes to try to resolve the problem.
# If we don't want to connect the ESP32 to the WiFi network please remove the 4 lines below.
wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password
  # domain: !secret domain

  manual_ip:
    static_ip: 192.168.1.224
    gateway: 192.168.1.1
    subnet: 255.255.255.0
#web_server:
#  port: 80
#  log: false
#  ota: false
 
# +--------------------------------------+
# | ** Don't make changes below this **  |
# +--------------------------------------+

globals:
  - id: can_ack_counter
    type: int
    restore_value: no
    initial_value: '0'
  - id: charge_status
    type: std::string
    restore_value: no
    initial_value: '"Alarm"'
  - id: can_status
    type: std::string
    restore_value: no
    initial_value: '"OFF"'
  - id: alarm_status
    type: std::string
    restore_value: no
    initial_value: '"NoAlarm"'
  - id: charging_v
    type: float
    restore_value: no
    initial_value: '0.0'
  - id: charging_a
    type: int
    restore_value: no
    initial_value: '0'
  - id: discharging_a
    type: int
    restore_value: no
    initial_value: '0'
  - id: can_msg_counter
    type: int
    restore_value: no
    initial_value: '0'

output:
  - platform: gpio
    pin: 2
    id: led
    inverted: true

light:
  - platform: binary
    output: led
    id: led_buitin
    name: "Builtin LED"
    internal: true
 
# +--------------------------------------+
# | JK-BMS UART connection               |
# +--------------------------------------+

uart:
  id: uart_0
  baud_rate: 115200
  rx_buffer_size: 384
  tx_pin: ${tx_pin}
  rx_pin: ${rx_pin}
#  debug:
#    direction: BOTH

jk_modbus:
  id: modbus0
  uart_id: uart_0

jk_bms:
  id: bms0
  jk_modbus_id: modbus0
  # enable_fake_traffic: true
 
# +--------------------------------------+

binary_sensor:
  - platform: jk_bms
    balancing:
      name: "${name} balancing"
    balancing_switch:
      name: "${name} balancing switch"
    charging:
      name: "${name} charging"
    charging_switch:
      id: charging_switch
      name: "${name} charging switch"
    discharging:
      name: "${name} discharging"
    discharging_switch:
      id: discharging_switch
      name: "${name} discharging switch"
    dedicated_charger_switch:
      id: dedicated_charger_switch      
      name: "${name} dedicated charger switch"

sensor:
  - platform: jk_bms
    min_cell_voltage:
      id: min_cell_voltage
      name: "${name} min cell voltage"
    max_cell_voltage:
      id: max_cell_voltage
      name: "${name} max cell voltage"
    min_voltage_cell:
      id: min_voltage_cell
      name: "${name} min voltage cell"
    max_voltage_cell:
      id: max_voltage_cell
      name: "${name} max voltage cell"
    delta_cell_voltage:
      name: "${name} delta cell voltage"
    average_cell_voltage:
      name: "${name} average cell voltage"
    cell_voltage_1:
      name: "${name} cell voltage 1"
    cell_voltage_2:
      name: "${name} cell voltage 2"
    cell_voltage_3:
      name: "${name} cell voltage 3"
    cell_voltage_4:
      name: "${name} cell voltage 4"
    cell_voltage_5:
      name: "${name} cell voltage 5"
    cell_voltage_6:
      name: "${name} cell voltage 6"
    cell_voltage_7:
      name: "${name} cell voltage 7"
    cell_voltage_8:
      name: "${name} cell voltage 8"
    cell_voltage_9:
      name: "${name} cell voltage 9"
    cell_voltage_10:
      name: "${name} cell voltage 10"
    cell_voltage_11:
      name: "${name} cell voltage 11"
    cell_voltage_12:
      name: "${name} cell voltage 12"
    cell_voltage_13:
      name: "${name} cell voltage 13"
    cell_voltage_14:
      name: "${name} cell voltage 14"
    cell_voltage_15:
      name: "${name} cell voltage 15"
    cell_voltage_16:
      name: "${name} cell voltage 16"
#    cell_voltage_17:
#      name: "${name} cell voltage 17"
#    cell_voltage_18:
#      name: "${name} cell voltage 18"
#    cell_voltage_19:
#      name: "${name} cell voltage 19"
#    cell_voltage_20:
#      name: "${name} cell voltage 20"
#    cell_voltage_21:
#      name: "${name} cell voltage 21"
#    cell_voltage_22:
#      name: "${name} cell voltage 22"
#    cell_voltage_23:
#      name: "${name} cell voltage 23"
#    cell_voltage_24:
#      name: "${name} cell voltage 24"
    power_tube_temperature:
      id: power_tube_temperature
      name: "${name} power tube temperature"
    temperature_sensor_1:
      id: temperature_sensor_1
      name: "${name} temperature sensor 1"
    temperature_sensor_2:
      id: temperature_sensor_2
      name: "${name} temperature sensor 2"
    total_voltage:
      id: total_voltage
      name: "${name} total voltage"
    current:
      id: current
      name: "${name} current"
    power:
      name: "${name} power"
    charging_power:
      name: "${name} charging power"
    discharging_power:
      name: "${name} discharging power"
    capacity_remaining:
      id: capacity_remaining
      name: "${name} capacity remaining"
    capacity_remaining_derived:
      name: "${name} capacity remaining derived"
    temperature_sensors:
      name: "${name} temperature sensors"
    charging_cycles:
      id: charging_cycles
      name: "${name} charging cycles"
    total_charging_cycle_capacity:
      name: "${name} total charging cycle capacity"
    battery_strings:
      name: "${name} battery strings"
    errors_bitmask:
      id: errors_bitmask
      name: "${name} errors bitmask"
    operation_mode_bitmask:
      name: "${name} operation mode bitmask"
    total_voltage_overvoltage_protection:
      name: "${name} total voltage overvoltage protection"
    total_voltage_undervoltage_protection:
      name: "${name} total voltage undervoltage protection"
    cell_voltage_overvoltage_protection:
      name: "${name} cell voltage overvoltage protection"
    cell_voltage_overvoltage_recovery:
      name: "${name} cell voltage overvoltage recovery"
    cell_voltage_overvoltage_delay:
      name: "${name} cell voltage overvoltage delay"
    cell_voltage_undervoltage_protection:
      name: "${name} cell voltage undervoltage protection"
    cell_voltage_undervoltage_recovery:
      name: "${name} cell voltage undervoltage recovery"
    cell_voltage_undervoltage_delay:
      name: "${name} cell voltage undervoltage delay"
    cell_pressure_difference_protection:
      name: "${name} cell pressure difference protection"
    discharging_overcurrent_protection:
      name: "${name} discharging overcurrent protection"
    discharging_overcurrent_delay:
      name: "${name} discharging overcurrent delay"
    charging_overcurrent_protection:
      name: "${name} charging overcurrent protection"
    charging_overcurrent_delay:
      name: "${name} charging overcurrent delay"
    balance_starting_voltage:
      name: "${name} balance starting voltage"
    balance_opening_pressure_difference:
      name: "${name} balance opening pressure difference"
    power_tube_temperature_protection:
      name: "${name} power tube temperature protection"
    power_tube_temperature_recovery:
      name: "${name} power tube temperature recovery"
    temperature_sensor_temperature_protection:
      name: "${name} temperature sensor temperature protection"
    temperature_sensor_temperature_recovery:
      name: "${name} temperature sensor temperature recovery"
    temperature_sensor_temperature_difference_protection:
      name: "${name} temperature sensor temperature difference protection"
    charging_high_temperature_protection:
      name: "${name} charging high temperature protection"
    discharging_high_temperature_protection:
      name: "${name} discharging high temperature protection"
    charging_low_temperature_protection:
      name: "${name} charging low temperature protection"
    charging_low_temperature_recovery:
      name: "${name} charging low temperature recovery"
    discharging_low_temperature_protection:
      name: "${name} discharging low temperature protection"
    discharging_low_temperature_recovery:
      name: "${name} discharging low temperature recovery"
    total_battery_capacity_setting:
      id: total_battery_capacity_setting
      name: "${name} total battery capacity setting"
    current_calibration:
      name: "${name} current calibration"
    device_address:
      name: "${name} device address"
    sleep_wait_time:
      name: "${name} sleep wait time"
    alarm_low_volume:
      name: "${name} alarm low volume"
    manufacturing_date:
      name: "${name} manufacturing date"
    total_runtime:
      name: "${name} total runtime"
    # start_current_calibration:
    #   name: "${name} start current calibration"
    actual_battery_capacity:
      name: "${name} actual battery capacity"
    # protocol_version:
    #   name: "${name} protocol version"
  # +--------------------------------------+
  # | Uptime sensor                        |
  # +--------------------------------------+
  - platform: uptime
    name: ${name} Uptime Sensor
    id: uptime_sensor
    update_interval: 60s
    on_raw_value:
      then:
        - text_sensor.template.publish:
            id: uptime_human
            state: !lambda |-
              int seconds = round(id(uptime_sensor).raw_state);
              int days = seconds / (24 * 3600);
              seconds = seconds % (24 * 3600);
              int hours = seconds / 3600;
              seconds = seconds % 3600;
              int minutes = seconds /  60;
              seconds = seconds % 60;
              return (
                (days ? to_string(days) + "d " : "") +
                (hours ? to_string(hours) + "h " : "") +
                (minutes ? to_string(minutes) + "m " : "") +
                (to_string(seconds) + "s")
              ).c_str();

text_sensor:
  - platform: jk_bms
    errors:
      name: "${name} errors"
    operation_mode:
      name: "${name} operation mode"
    battery_type:
      name: "${name} battery type"
    # password:
    #   name: "${name} password"
    device_type:
      name: "${name} device type"
    software_version:
      name: "${name} software version"
    manufacturer:
      name: "${name} manufacturer"
    total_runtime_formatted:
      name: "${name} total runtime formatted"
  # +--------------------------------------+
  # | Template text sensors                |
  # +--------------------------------------+
  - platform: template
    name: ${name} Uptime Human Readable
    id: uptime_human
    icon: mdi:clock-start
  - platform: template
    name: "${name} Charging Status"
    id: charging_status
  - platform: template
    name: "${name} CANBUS Status"
    id: canbus_status

# +--------------------------------------+
# | Slider                               |
# +--------------------------------------+
number:
  - platform: template
    name: "${name} Bulk voltage"
    id: "bulk_voltage"
    step: 0.1
    min_value: 52.8
    max_value: 57.6
    mode: slider
    initial_value: "${absorption_v}"
    unit_of_measurement: V
    icon: mdi:battery-charging
    optimistic: true
  - platform: template
    name: "${name} Float voltage"
    id: "float_voltage"
    step: 0.1
    min_value: 52.8
    max_value: 57.6
    mode: slider
    initial_value: "${float_v}"
    unit_of_measurement: V
    icon: mdi:battery-charging
    optimistic: true
  - platform: template
    name: "${name} Charging current max"
    id: "charging_current"
    step: 1
    min_value: 0
    max_value: "${charge_a}"
    mode: slider
    initial_value: "${charge_a}"
    unit_of_measurement: A
    icon: mdi:current-dc
    optimistic: true
  - platform: template
    name: "${name} Rebulk Offset V."
    id: "rebulk_offset"
    step: 0.1
    min_value: 0
    max_value: 5
    mode: slider
    initial_value: "${rebulk_offset_v}"
    unit_of_measurement: V
    icon: mdi:sine-wave
    optimistic: true
  - platform: template
    name: "${name} Absorption time"
    id: "absorption_time"
    step: 1
    min_value: 0
    max_value: 180
    mode: slider
    initial_value: "${absorption_time}"
    unit_of_measurement: min
    icon: mdi:clock-start
    optimistic: true
  - platform: template
    name: "${name} Absorption Offset V."
    id: "absorption_offset"
    step: 0.05
    min_value: 0
    max_value: 1
    mode: slider
    initial_value: "${absorption_offset_v}"
    unit_of_measurement: V
    icon: mdi:sine-wave
    optimistic: true

script:
  - id: absorption_script
    then:
      - lambda: id(charge_status) = "Absorption";
      # delay value in ms
      - delay: !lambda "return id(absorption_time).state * 60 * 1000;"
      - lambda: id(charge_status) = "Wait";

switch:
  - platform: template
    name: ${name} Charging enabled
    id: switch_charging
    optimistic: true
  - platform: template
    name: ${name} Discharge enabled
    id: switch_discharging
    optimistic: true
  - platform: template
    name: ${name} Charging manually (top bal)
    id: switch_chg_bulk
    optimistic: true
  - platform: template
    name: ${name} Float charge
    id: switch_chg_float
    optimistic: true
 
# +--------------------------------------+
# | CAN bus script                       |
# +--------------------------------------+
canbus:
  - platform: esp32_can
    tx_pin: ${can_tx_pin}
    rx_pin: ${can_rx_pin}
    can_id: 4
    bit_rate: 500kbps
    on_frame:
    - can_id: 0x305 # Inverter ACK - SMA/LG/Pylon/Goodwe reply
      then:
        - light.toggle:
            id: led_buitin
        - lambda: |-
            id(can_ack_counter) = 0;                              // Reset ACK counter
            id(can_status) = "ON";                                // Set CANBUS Status to ON
            id(canbus_status).publish_state(id(can_status));      // Publish text sensor
            ESP_LOGI("main", "received can id: 0x305 ACK");
 
interval:
  - interval: 120s
    then:
      - lambda: id(can_ack_counter) = 0;                          // Reset ACK counter for test inverter ACK
 
  - interval: 100ms
    then:
      # Start CAN Handling
      - if:
          condition:
            lambda: |-
 
              if (id(can_ack_counter) < 20) {                     // Inverter ACK ? => CANBUS ON
 
                id(can_ack_counter)++;                            // CANBUS ACK counter ++
                id(can_msg_counter)++;                            // CANBUS MSG counter ++
                return true;                                      // Condition OK
 
              }
              else if (id(can_status) == "OFF") {                 // CANBUS already OFF ?
 
                return false;                                     // Nothing to do
 
              }
              else {
 
                id(can_status) = "OFF";                           // Set CANBUS Status to OFF
                id(canbus_status).publish_state(id(can_status));  // Publish text sensor
                ESP_LOGI("main", "No rx can 0x305 reply, Inverter not connected/responding...");
                return false;                                     // Condition NOK
 
              }
 
          then:
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 1) & ((${can_protocol} == 1) | (${can_protocol} == 2)));
                then:
                  canbus.send: # Protection Alarms, Warning and Flags ( Pylontech / Goodwe / Seplos )
                    can_id: 0x359
                    data: !lambda |-
 
                      // +---------------------------+
                      // | JK-BMS errors bitmask     |
                      // +---------------------------+
 
                      // 0x8B 0x00 0x00: Battery warning message              0000 0000 0000 0000
                      //
                      // Bit 0    Low capacity                                1 (alarm), 0 (normal)    warning
                      // Bit 1    Power tube overtemperature                  1 (alarm), 0 (normal)    alarm
                      // Bit 2    Charging overvoltage                        1 (alarm), 0 (normal)    alarm
                      // Bit 3    Discharging undervoltage                    1 (alarm), 0 (normal)    alarm
                      // Bit 4    Battery over temperature                    1 (alarm), 0 (normal)    alarm
                      // Bit 5    Charging overcurrent                        1 (alarm), 0 (normal)    alarm
                      // Bit 6    Discharging overcurrent                     1 (alarm), 0 (normal)    alarm
                      // Bit 7    Cell pressure difference                    1 (alarm), 0 (normal)    alarm
                      // Bit 8    Overtemperature alarm in the battery box    1 (alarm), 0 (normal)    alarm
                      // Bit 9    Battery low temperature                     1 (alarm), 0 (normal)    alarm
                      // Bit 10   Cell overvoltage                            1 (alarm), 0 (normal)    alarm
                      // Bit 11   Cell undervoltage                           1 (alarm), 0 (normal)    alarm
                      // Bit 12   309_A protection                            1 (alarm), 0 (normal)    alarm
                      // Bit 13   309_A protection                            1 (alarm), 0 (normal)    alarm
                      // Bit 14   Reserved
                      // Bit 15   Reserved
                      //
                      // Examples:
                      // 0x0001 = 00000000 00000001: Low capacity alarm
                      // 0x0002 = 00000000 00000010: MOS tube over-temperature alarm
                      // 0x0003 = 00000000 00000011: Low capacity alarm AND power tube over-temperature alarm
 
                      // +---------------------------+
                      // | Protection : byte 0 and 1 |
                      // +---------------------------+
 
                      uint8_t can_mesg[] = {0, 0, 0, 0, 0, 0, 0, 0};
 
                      // JK-BMS alarm ?
                      if (id(errors_bitmask).state > 1) {
                         uint16_t jk_errormask = id(errors_bitmask).state;
 
                         if ((jk_errormask & 0x04) | (jk_errormask & 0x80) | (jk_errormask & 0x400)) {                 // Hight.Voltage.Alarm JK bit 2,7,10
                            can_mesg[0] = 0x02;                                                                        // byte0_bit1 (0x02 = bin 10)
                            id(alarm_status) = "OVP";
                            ESP_LOGI("main", "Hight.Voltage.Alarm JK bit 2,7,10 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x08) | (jk_errormask & 0x800)) {                                         // Low.Voltage.Alarm JK bit 3,11 
                            can_mesg[0] = can_mesg[0] | 0x04;                                                          // byte0_bit2 (0x04 = bin 100)
                            id(alarm_status) = "UVP";
                            ESP_LOGI("main", "Low.Voltage.Alarm JK bit 3,11 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x02) | (jk_errormask & 0x10) | (jk_errormask & 0x100)) {                 // Hight.Temp.Alarm JK bit 1,4,8
                            can_mesg[0] = can_mesg[0] | 0x08;                                                          // byte0_bit3 (0x08 = bin 1000)
                            id(alarm_status) = "OTP";
                            ESP_LOGI("main", "Hight.Temp.Alarm JK bit 1,4,8 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x200)) {                                                                 // Low.Temp.Alarm JK bit 9
                            can_mesg[0] = can_mesg[0] | 0x10;                                                          // byte0_bit4 (0x10 = bin 10000)
                            id(alarm_status) = "UTP";
                            ESP_LOGI("main", "Low.Temp.Alarm JK bit 9 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x40)) {                                                                  // Discharge.Over.Current JK bit 6
                            can_mesg[0] = can_mesg[0] | 0x80;                                                          // byte0_bit7 (0x80 = bin 10000000)
                            id(alarm_status) = "DOCP";
                            ESP_LOGI("main", "Discharge.Over.Current JK bit 6 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x20)) {                                                                  // Charge.Over.Current JK bit 5
                            can_mesg[1] = 0x01;                                                                        // byte1_bit0 (0x01 = bin 1)
                            id(alarm_status) = "COCP";
                            ESP_LOGI("main", "Charge.Over.Current JK bit 5 - can_msg[1] : %x", can_mesg[1]);
                         }
                         if ((jk_errormask & 0x1000) | (jk_errormask & 0x2000)) {                                      // BMS internal error JK bit 12,13
                            can_mesg[1] = can_mesg[1] | 0x08;                                                          // byte1_bit3 (0x08 = bin 1000)
                            id(alarm_status) = "BMS";
                            ESP_LOGI("main", "BMS internal error JK bit 12,13 - can_msg[1] : %x", can_mesg[1]);
                         }
                         if ((jk_errormask & 0x80)) {                                                                  // Cell Imbalance JK bit 7
                            can_mesg[1] = can_mesg[1] | 0x10;                                                          // byte1_bit4 (0x10 = bin 10000)
                            ESP_LOGI("main", "Cell Imbalance JK bit 7 - can_msg[1] : %x", can_mesg[1]);
                         }
                      }
                      // No Alarm
                      else id(alarm_status) = "NoAlarm";
 
                      // +---------------------------+
                      // | Warning : byte 2 and 3    |
                      // +---------------------------+
 
                      can_mesg[2] = 0x00;               // byte2 (JK-BMS infos not available)
                      can_mesg[3] = 0x00;               // byte3 (JK-BMS infos not available)
 
                      // +---------------------------+
                      // | Flags : byte 4 to 7       |
                      // +---------------------------+
 
                      int batt_mods = ${batt_modules};
 
                      can_mesg[4] = batt_mods;          // byte4 - Module in parallel
                      can_mesg[5] = 0x00;               // byte5
                      can_mesg[6] = 0x00;               // byte6
                      can_mesg[7] = 0x00;               // byte7 - DIP switches 1,3 10000100 0x84                      
 
                      ESP_LOGI("main", "send can id: 0x359 hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                      return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                      
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 1) & ((${can_protocol} == 3) | (${can_protocol} == 4)));
                then:
                  canbus.send: # Protection Alarms and Warning ( SMA / Victron )
                    can_id: 0x35A
                    data: !lambda |-
 
                      // +---------------------------+
                      // | Protection : byte 0,1,2,3 |
                      // +---------------------------+
 
                      uint8_t can_mesg[] = {0, 0, 0, 0, 0, 0, 0, 0};
 
                      // JK-BMS alarm ?
                      if (id(errors_bitmask).state > 1) {
                         uint16_t jk_errormask = id(errors_bitmask).state;
 
                         if ((jk_errormask & 0x04) | (jk_errormask & 0x80) | (jk_errormask & 0x400)) {                 // Hight.Voltage.Alarm JK bit 2,7,10
                            can_mesg[0] = 0x04;                                                                        // byte0_bit2 (0x04 = bin 100)
                            id(alarm_status) = "OVP";
                            ESP_LOGI("main", "Hight.Voltage.Alarm JK bit 2,7,10 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x08) | (jk_errormask & 0x800)) {                                         // Low.Voltage.Alarm JK bit 3,11
                            can_mesg[0] = can_mesg[0] | 0x10;                                                          // byte0_bit4 (0x10 = bin 10000)
                            id(alarm_status) = "UVP";
                            ESP_LOGI("main", "Low.Voltage.Alarm JK bit 3,11 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x02) | (jk_errormask & 0x10) | (jk_errormask & 0x100)) {                 // Hight.Temp.Alarm JK bit 1,4,8
                            can_mesg[0] = can_mesg[0] | 0x40;                                                          // byte0_bit6 (0x40 = bin 1000000)
                            id(alarm_status) = "OTP";
                            ESP_LOGI("main", "Hight.Temp.Alarm JK bit 1,4,8 - can_msg[0] : %x", can_mesg[0]);
                         }
                         if ((jk_errormask & 0x200)) {                                                                 // Low.Temp.Alarm JK bit 9
                            can_mesg[1] = 0x01;                                                                        // byte1_bit0 (0x01 = bin 1)
                            id(alarm_status) = "UTP";
                            ESP_LOGI("main", "Low.Temp.Alarm JK bit 9 - can_msg[1] : %x", can_mesg[1]);
                         }
                         if ((jk_errormask & 0x40)) {                                                                  // Discharge.Over.Current JK bit 6
                            can_mesg[1] = can_mesg[1] | 0x40;                                                          // byte1_bit6 (0x40 = bin 1000000)
                            id(alarm_status) = "DOCP";
                            ESP_LOGI("main", "Discharge.Over.Current JK bit 6 - can_msg[1] : %x", can_mesg[1]);
                         }
                         if ((jk_errormask & 0x20)) {                                                                  // Charge.Over.Current JK bit 5
                            can_mesg[2] = 0x01;                                                                        // byte2_bit0 (0x01 = bin 1)
                            id(alarm_status) = "COCP";
                            ESP_LOGI("main", "Charge.Over.Current JK bit 5 - can_msg[2] : %x", can_mesg[2]);
                         }
                         if ((jk_errormask & 0x1000) | (jk_errormask & 0x2000)) {                                      // BMS.Internal.Error JK bit 12,13
                            can_mesg[2] = can_mesg[2] | 0x40;                                                          // byte2_bit6 (0x40 = bin 1000000)
                            id(alarm_status) = "BMS";
                            ESP_LOGI("main", "BMS internal error JK bit 12,13 - can_msg[2] : %x", can_mesg[2]);
                         }
                         if ((jk_errormask & 0x80)) {                                                                  // Cell.Imbalance JK bit 7
                            can_mesg[3] = 0x01;                                                                        // byte3_bit0 (0x01 = bin 1)
                            ESP_LOGI("main", "Cell Imbalance JK bit 7 - can_msg[3] : %x", can_mesg[3]);
                         }
                      }
                      // No Alarm
                      else id(alarm_status) = "NoAlarm";
 
                      ESP_LOGI("main", "send can id: 0x35A hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                      return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                      
            - if:
                condition:
                  lambda: return id(can_msg_counter) == 2;
                then:
                  canbus.send: # BMS instruction : Charge Volts, Charge Amps, Discharge Amps, Min voltage
                    can_id: 0x351
                    data: !lambda |-
 
                      // +--------------------------------------+
                      // | Charging Logic                       |
                      // +--------------------------------------+
 
                      // Warning : information from JK BMS is not available immediately after boot
 
                      // Alarm : if JK-BMS alarm !
                      if (id(errors_bitmask).state > 1) {
                           id(charge_status) = "Alarm";
                      }
                      // No Alarm => Wait
                      else if ((id(errors_bitmask).state < 2) & (id(charge_status) == "Alarm")) {
                           id(charge_status) = "Wait";
                      }
                      // Disabled : charging disabled if BMS or ESP32 switch is OFF
                      else if ((!id(charging_switch).state) | (!id(switch_charging).state)) {
                           id(charge_status) = "Disabled";
                      }
                      // No Disabled => Wait
                      else if ((id(charging_switch).state) & (id(switch_charging).state) & (id(charge_status) == "Disabled")) {
                           id(charge_status) = "Wait";
                      }
                      // Bulk Manually : after switch ON 'Charging manually (top bal)'
                      else if (id(switch_chg_bulk).state) {
                           id(charge_status) = "Bulk Manually";
                      }
                      // No Bulk Manually => Wait
                      else if ((!id(switch_chg_bulk).state) & (id(charge_status) == "Bulk Manually")) {
                           id(charge_status) = "Wait";
                      }
                      // Bulk : if Batt. V. <= ( Absorption V. - Rebulk Offset V. )                                   ( Bulk : <= 55.2-2.5 = 52.7V by default )
                      else if (id(total_voltage).state <= (id(bulk_voltage).state - id(rebulk_offset).state)) {
                           id(charge_status) = "Bulk";
                           if (id(absorption_script).is_running()) id(absorption_script).stop();
                      }
                      // Absorption : if Batt. V >= ( Absorption V. - Absorption Offset V. )                          ( Absorption : >= 55.2-0.05 = 55.15V by default )
                      else if ((id(charge_status) == "Bulk") & (id(total_voltage).state >= (id(bulk_voltage).state - id(absorption_offset).state))) {
                           id(charge_status) = "Absorption";
                           if (!id(absorption_script).is_running()) id(absorption_script).execute();                  // 10 % from top start absorption timer
                      }
                      // Float : if Batt. V. > ( Absorption V. - Rebulk Offset V. ) and Float switch is ON            ( Float : after Absorption or > 55.2-2.5 = 52.7V by default )
                      else if ((id(switch_chg_float).state) & (id(charge_status) == "Wait")) {
                           id(charge_status) = "Float";
                      }
                      // No Float => Wait
                      else if ((!id(switch_chg_float).state) & (id(charge_status) == "Float")) {
                           id(charge_status) = "Wait";
                      }
 
                      // +--------------------------------------+
                      // | Charge values                        |
                      // +--------------------------------------+
 
                      // Bulk Charge
                      if ((id(charge_status) == "Bulk") | (id(charge_status) == "Bulk Manually") | (id(charge_status) == "Absorption")) {
                           id(charging_v) = id(bulk_voltage).state;
                           id(charging_a) = id(charging_current).state;
                      }
                      // Float Charge
                      else if (id(charge_status) == "Float") {
                           id(charging_v) = id(float_voltage).state;
                           id(charging_a) = id(charging_current).state;
                      }
                      // Disabled or Wait : Stop Charging
                      else if ((id(charge_status) == "Disabled") | (id(charge_status) == "Wait")) {
                           id(charging_v) = round(id(total_voltage).state * 10)/10;     // Actual battery voltage
                           id(charging_a) = 0;
                      }
 
                      // +--------------------------------------+
                      // | Discharge values                     |
                      // +--------------------------------------+
 
                      // Stop Discharging if BMS or ESP32 switch is OFF
                      if ((!id(discharging_switch).state) | (!id(switch_discharging).state)) id(discharging_a) = 0;
                      // Stop Discharging if battery voltage is low
                      else if (id(total_voltage).state <= ${min_discharge_v}) id(discharging_a) = 0;
                      // Discharging is OK
                      else id(discharging_a) = ${discharge_a};
 
                      // +--------------------------------------+
                      // | Alarm overwrite values               |
                      // +--------------------------------------+
 
                      ESP_LOGI("main", "Alarm Status : %s", id(alarm_status).c_str());
 
                      // Alarm : Stop Charging and Discharging
                      if ((id(alarm_status) == "OTP") | (id(alarm_status) == "BMS")){
                           id(charging_v) = 51.2;
                           id(charging_a) = 0;
                           id(discharging_a) = 0;
                      }
                      // Alarm : Stop Charging
                      else if ((id(alarm_status) == "OVP") | (id(alarm_status) == "UTP") | (id(alarm_status) == "COCP")){
                           id(charging_v) = 51.2;
                           id(charging_a) = 0;
                      }
                      // Alarm : Stop Discharging
                      else if ((id(alarm_status) == "UVP") | (id(alarm_status) == "DOCP")){
                           id(discharging_a) = 0;
                      }
 
                      // +--------------------------------------+
                      // | CAN messages                         |
                      // +--------------------------------------+
 
                      // Byte [00:01] = CVL : Charge Limit Voltage
                      // Byte [02:03] = CCL : Charge Limit Current
                      // Byte [04:05] = DCL : Discharge Limit Current
                      // Byte [06:07] = DVL : Discharge Limit Voltage
 
                      uint8_t can_mesg[8];
 
                      can_mesg[0] = uint16_t(id(charging_v) * 10) & 0xff;
                      can_mesg[1] = uint16_t(id(charging_v) * 10) >> 8 & 0xff;
                      can_mesg[2] = uint16_t(id(charging_a) * 10) & 0xff;
                      can_mesg[3] = uint16_t(id(charging_a) * 10) >> 8 & 0xff;
                      can_mesg[4] = uint16_t(id(discharging_a) * 10) & 0xff;
                      can_mesg[5] = uint16_t(id(discharging_a) * 10) >> 8 & 0xff;
                      can_mesg[6] = uint16_t(${min_discharge_v} * 10) & 0xff;
                      can_mesg[7] = uint16_t(${min_discharge_v} * 10) >> 8 & 0xff;
 
                      // Publish text sensor
                      id(charging_status).publish_state(id(charge_status));
 
                      // Logs
                      ESP_LOGI("main", "send can id: 0x351 hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                      ESP_LOGI("main", "Charge Status : %s", id(charge_status).c_str());
                      return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                      
            - if:
                condition:
                  lambda: return id(can_msg_counter) == 3;
                then:
                  canbus.send: # Actual State of Charge (SOC) / State of Health (SOH)
                    can_id: 0x355
                    data: !lambda |-
                      int soh = round(((id(charging_cycles).state/${max_cycles})-1)*-100);
                      uint8_t can_mesg[4];
                      can_mesg[0] = uint16_t(id(capacity_remaining).state) & 0xff;
                      can_mesg[1] = uint16_t(id(capacity_remaining).state) >> 8 & 0xff;
                      can_mesg[2] = soh & 0xff;
                      can_mesg[3] = soh >> 8 & 0xff;
                      ESP_LOGI("main", "send can id: 0x355 hex: %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3]);
                      return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3]};
                      
            - if:
                condition:
                  lambda: return id(can_msg_counter) == 4;
                then:
                  canbus.send: # Actual Voltage / Current / Temperature (Deye 0x305 ACK)
                    can_id: 0x356
                    data: !lambda |-
                      uint8_t can_mesg[6];
                      can_mesg[0] = uint16_t(id(total_voltage).state * 100) & 0xff;
                      can_mesg[1] = uint16_t(id(total_voltage).state * 100) >> 8 & 0xff;
                      can_mesg[2] = int16_t(id(current).state * 10) & 0xff;
                      can_mesg[3] = int16_t(id(current).state * 10) >> 8 & 0xff;
                      can_mesg[4] = int16_t(max(id(temperature_sensor_1).state, id(temperature_sensor_2).state)* 10) & 0xff;
                      can_mesg[5] = int16_t(max(id(temperature_sensor_1).state, id(temperature_sensor_2).state)* 10) >> 8 & 0xff;
                      ESP_LOGI("main", "send can id: 0x356 hex: %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5]);
                      return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5]};
                      
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 5) & ((${can_protocol} == 1) | (${can_protocol} == 2)));
                then:
                  canbus.send: # Request flag to Enable/Disable: Charge, Discharge ( Pylontech / Goodwe / Seplos )
                    can_id: 0x35C
                    data: !lambda |-
                      uint8_t can_mesg[2];
                      can_mesg[0] = 0x00;
                      can_mesg[1] = 0x00;
                      
                      // Bit 7 : Charge enable
                      if ((id(charging_switch).state) & (id(switch_charging).state))
                         can_mesg[0] = 0x80;
                      
                      // Bit 6 : Discharge enable
                      if ((id(discharging_switch).state) & (id(switch_discharging).state))
                         can_mesg[0] = can_mesg[0] | 0x40;
                                            
                      ESP_LOGI("main", "send can id: 0x35C hex: %x %x", can_mesg[0], can_mesg[1]);
                      return {can_mesg[0], can_mesg[1]};
                      
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 6) & (${can_protocol} == 2));
                then:
                  canbus.send: # Actual Max Cell Temp, Min Cell Temp, Max Cell V, Min Cell V ( Pylontech / Goodwe / Seplos )
                    can_id: 0x70
                    data: !lambda |-
                      
                      // Byte [00:01] : Max cell temperature
                      // Byte [02:03] : Min cell temperature
                      // Byte [04:05] : Max cell voltage
                      // Byte [06:07] : Min cell voltage
 
                      int max_cell_voltage_i = id(max_cell_voltage).state * 100.0;
                      int min_cell_voltage_i = id(min_cell_voltage).state * 100.0;
                      uint8_t can_mesg[8];
                      can_mesg[0] = int16_t(max(id(temperature_sensor_1).state, id(temperature_sensor_2).state)* 10) & 0xff;
                      can_mesg[1] = int16_t(max(id(temperature_sensor_1).state, id(temperature_sensor_2).state)* 10) >> 8 & 0xff;
                      can_mesg[2] = int16_t(min(id(temperature_sensor_1).state, id(temperature_sensor_2).state)* 10) & 0xff;
                      can_mesg[3] = int16_t(min(id(temperature_sensor_1).state, id(temperature_sensor_2).state)* 10) >> 8 & 0xff;
                      can_mesg[4] = max_cell_voltage_i & 0xff;
                      can_mesg[5] = max_cell_voltage_i >> 8 & 0xff;
                      can_mesg[6] = min_cell_voltage_i & 0xff;
                      can_mesg[7] = min_cell_voltage_i >> 8 & 0xff;
                      ESP_LOGI("main", "send can id: 0x70 hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                      return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                      
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 6) & (${can_protocol} == 2));
                then:
                  - canbus.send: # Actual Max Cell Temp ID, Min Cell Temp ID, Max Cell V ID, Min Cell ID ( Pylontech / Goodwe / Seplos )
                      can_id: 0x371
                      data: !lambda |-
                        
                        // Byte [00:01] : Max cell temperature ID
                        // Byte [02:03] : Min cell temperature ID
                        // Byte [04:05] : Max cell voltage ID
                        // Byte [06:07] : Min cell voltage ID
 
                        uint8_t can_mesg[8];
 
                        // Min-Max Temp. Sensor ID ?
                        if (id(temperature_sensor_1).state >= id(temperature_sensor_2).state){
                          can_mesg[0] = 0x01;
                          can_mesg[2] = 0x02;
                        }
                        else {
                          can_mesg[0] = 0x02;
                          can_mesg[2] = 0x01;
                        }
 
                        can_mesg[1] = 0x00;
                        can_mesg[3] = 0x00;
                        can_mesg[4] = uint16_t(id(max_voltage_cell).state) & 0xff;
                        can_mesg[5] = uint16_t(id(max_voltage_cell).state) >> 8 & 0xff;
                        can_mesg[6] = uint16_t(id(min_voltage_cell).state) & 0xff;
                        can_mesg[7] = uint16_t(id(min_voltage_cell).state) >> 8 & 0xff;
                        ESP_LOGI("main", "send can id: 0x371 hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                        return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                        
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 7) & (${can_protocol} == 4));
                then:
                  - canbus.send: # Battery modules information ( Victron )
                      can_id: 0x372
                      data: !lambda |-
                        
                        // Byte [00:01] : Nbr. of battery modules online
                        // Byte [02:03] : Nbr. of modules blocking charge
                        // Byte [04:05] : Nbr. of modules blocking discharge
                        // Byte [06:07] : Nbr. of battery modules offline
 
                        uint8_t can_mesg[] = {0, 0, 0, 0, 0, 0, 0, 0};
                        can_mesg[0] = 0x01;

                        ESP_LOGI("main", "send can id: 0x372 hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                        return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};

            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 8) & (${can_protocol} == 4));
                then:
                  canbus.send: # Actual Min Cell V, Max Cell V, Min Cell Temp (Kelvin), Max Cell Temp (Kelvin) ( Victron )
                    can_id: 0x373
                    data: !lambda |-
                      
                      // Byte [00:01] : Min cell voltage
                      // Byte [02:03] : Max cell voltage
                      // Byte [04:05] : Min cell temperature
                      // Byte [06:07] : Max cell temperature
 
                      int min_cell_voltage_i = id(min_cell_voltage).state * 1000.0;
                      int max_cell_voltage_i = id(max_cell_voltage).state * 1000.0;
                      int min_temp_kelvin = min(id(temperature_sensor_1).state, id(temperature_sensor_2).state) + 273.15;
                      int max_temp_kelvin = max(id(temperature_sensor_1).state, id(temperature_sensor_2).state) + 273.15;
 
                      uint8_t can_mesg[8];
                      can_mesg[0] = min_cell_voltage_i & 0xff;
                      can_mesg[1] = min_cell_voltage_i >> 8 & 0xff;
                      can_mesg[2] = max_cell_voltage_i & 0xff;
                      can_mesg[3] = max_cell_voltage_i >> 8 & 0xff;
                      can_mesg[4] = min_temp_kelvin & 0xff;
                      can_mesg[5] = min_temp_kelvin >> 8 & 0xff;
                      can_mesg[6] = max_temp_kelvin & 0xff;
                      can_mesg[7] = max_temp_kelvin >> 8 & 0xff;
                      
                      ESP_LOGI("main", "send can id: 0x373 hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                      return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                      
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 8) & (${can_protocol} == 4));
                then:
                  - canbus.send: # Min cell voltage ID [ASCII] ( Victron )
                      can_id: 0x374
                      data: !lambda |-
 
                        int cell_id = id(min_voltage_cell).state;

                        ESP_LOGI("main", "send can id: 0x374 [ASCII] Min cell voltage ID : %i", cell_id);
 
                        if (cell_id == 1) return {0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 2) return {0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 3) return {0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 4) return {0x34, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 5) return {0x35, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 6) return {0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 7) return {0x37, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 8) return {0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 9) return {0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 10) return {0x31, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 11) return {0x31, 0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 12) return {0x31, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 13) return {0x31, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 14) return {0x31, 0x34, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 15) return {0x31, 0x35, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 16) return {0x31, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else return {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 8) & (${can_protocol} == 4));
                then:
                  - canbus.send: # Max cell voltage ID [ASCII] ( Victron )
                      can_id: 0x375
                      data: !lambda |-
 
                        int cell_id = id(max_voltage_cell).state;

                        ESP_LOGI("main", "send can id: 0x375 [ASCII] Max cell voltage ID : %i", cell_id);
 
                        if (cell_id == 1) return {0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 2) return {0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 3) return {0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 4) return {0x34, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 5) return {0x35, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 6) return {0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 7) return {0x37, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 8) return {0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 9) return {0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 10) return {0x31, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 11) return {0x31, 0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 12) return {0x31, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 13) return {0x31, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 14) return {0x31, 0x34, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 15) return {0x31, 0x35, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else if (cell_id == 16) return {0x31, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        else return {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 8) & (${can_protocol} == 4));
                then:
                  - canbus.send: # Min cell temperature ID [ASCII] ( Victron )
                      can_id: 0x376
                      data: !lambda |-
 
                        // Min Temp. Sensor ID ?
                        if (id(temperature_sensor_1).state >= id(temperature_sensor_2).state){
                          ESP_LOGI("main", "send can id: 0x376 [ASCII] Min Temp. Sensor ID : 2");
                          return {0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        }
                        else {
                          ESP_LOGI("main", "send can id: 0x376 [ASCII] Min Temp. Sensor ID : 1");
                          return {0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        }
 
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 8) & (${can_protocol} == 4));
                then:
                  - canbus.send: # Max cell temperature ID [ASCII] ( Victron )
                      can_id: 0x377
                      data: !lambda |-
 
                        // Max Temp. Sensor ID ?
                        if (id(temperature_sensor_1).state >= id(temperature_sensor_2).state){
                          ESP_LOGI("main", "send can id: 0x377 [ASCII] Max Temp. Sensor ID : 1");
                          return {0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        }
                        else {
                          ESP_LOGI("main", "send can id: 0x377 [ASCII] Max Temp. Sensor ID : 2");
                          return {0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
                        }
 
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 9) & ((${can_protocol} == 2) | (${can_protocol} == 4)));
                then:
                  - canbus.send: # Battery Installed Capacity Ah ( Victron, Sol-Ark, Luxpower )
                      can_id: 0x379
                      data: !lambda |-
                        uint8_t can_mesg[] = {0, 0, 0, 0, 0, 0, 0, 0};
                        can_mesg[0] = uint16_t(id(total_battery_capacity_setting).state) & 0xff;
                        can_mesg[1] = uint16_t(id(total_battery_capacity_setting).state) >> 8 & 0xff;
 
                        ESP_LOGI("main", "send can id: 0x379 hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                        return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                        
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 10) & (${can_protocol} == 4));
                then:
                  - canbus.send: # Product identification [ASCII] ( Victron )
                      can_id: 0x382
                      data: !lambda |-
                        ESP_LOGI("main", "send can id: 0x382 [ASCII] Product : JK-BMS");
                        return {0x4A, 0x4B, 0x2D, 0x42, 0x4D, 0x53, 0x00, 0x00}; // JK-BMS
 
            - if:
                condition:
                  lambda: return ((id(can_msg_counter) == 11) & ((${can_protocol} == 3) | (${can_protocol} == 4)));
                then:
                  - canbus.send: # Battery information ( SMA, Victron )
                      can_id: 0x35F
                      data: !lambda |-
 
                        //                SMA                 Victron
                        // Byte [00:01] : Bat-Type            Product ID
                        // Byte [02:03] : BMS Version         Firmware version (1.16 => HEX [01:10])
                        // Byte [04:05] : Bat-Capacity        Available Capacity Ah
                        // Byte [06:07] : Manufacturer ID     Hardware version
 
                        uint8_t can_mesg[] = {0, 0, 0, 0, 0, 0, 0, 0};
                        can_mesg[2] = 0x01;
                        can_mesg[3] = 0x10;
                        can_mesg[4] = uint16_t(id(total_battery_capacity_setting).state) & 0xff;
                        can_mesg[5] = uint16_t(id(total_battery_capacity_setting).state) >> 8 & 0xff;
 
                        ESP_LOGI("main", "send can id: 0x35F hex: %x %x %x %x %x %x %x %x", can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]);
                        return {can_mesg[0], can_mesg[1], can_mesg[2], can_mesg[3], can_mesg[4], can_mesg[5], can_mesg[6], can_mesg[7]};
                        
            - if:
                condition:
                  lambda: return id(can_msg_counter) == 12;
                then:
                  - canbus.send:
                      can_id: 0x35E # Manufacturer name
                      data: !lambda |-
                        if (${can_bms_name} == 1){
                           ESP_LOGI("main", "send can id: 0x35E ASCII : PYLON");
                           return {0x50, 0x59, 0x4C, 0x4F, 0x4E, 0x20, 0x20, 0x20}; // PYLON ( recognized by Deye, display PYLON name and SOH )
                        }
                        else if (${can_bms_name} == 2){
                           ESP_LOGI("main", "send can id: 0x35E ASCII : GOODWE");
                           return {0x47, 0x4F, 0x4F, 0x44, 0x57, 0x45, 0x20, 0x20}; // GOODWE
                        }
                        else if (${can_bms_name} == 3){
                           ESP_LOGI("main", "send can id: 0x35E ASCII : SHEnergy");
                           return {0x53, 0x48, 0x45, 0x6E, 0x65, 0x72, 0x67, 0x79}; // SHEnergy (SEPLOS)
                        }
                    # Reset counter
                  - lambda: id(can_msg_counter) = 0;

Conclusion

This converter is now running since Aug-2023 without any issues. The live data in Home Assistant:

BMS data shown in Home Assistant

Downloads

If you like my articles feel to donate a cappuccino or so…

en/tech/jkbmscan.1715494819.txt.gz · Last modified: 2024/05/12 06:20 by bullar